□樹脂成形 □電子部品 □鍛造・鋳造 □プレス加工 □表面処理					
区分 □機械加工 □金型・治工具 □自動機・装置 □システム・ソフトウェア □素材 ■その他(発電機)					
展示No, 提案名	提案名		工法	新規性	
38 捨てていたエネルギー(風、振動	捨てていたエネルギー(風、振動)を回収する発電機		ロエ・組立	業界初	
セールスポイント					
現在、洋上生簀のIoT化に取り組んでいる。各種センサーやカメラを動かす電源として弱い風でも回るマイクロ風 力発電機は非常に稼働率が高く、電力として有効である。この微弱な力でも回る発電機は自動車業界や交通イ ンフラ等に於いても活躍の場があるのではないかと考え、ご提案させて頂いた。					
提案技術・提案工法					
1m/s以下の弱い風でも回り発電する風力発電機技術の応用 風力発電での			の発電効率の	比較	
	15 10 10 10 10 10 10 10 10 10 10 10 10 10				
ー般的なコアレスコイル 弊社の3Dコアレスコイル ************************************					
マイクロ風力発電機(コイル径180mm)の実績					
※コイルの磁石の通り道を凹ませ、磁石を近づけ磁力を高めること		コイル径50mmへ小形化 10Wのコアレス発電機			
※発電効率が100%増加					
適用可能な製品/分野 気流や振動の発生するところ、 車両の床下(外部)やエンジンルーム 交通インフラのIoT用電源、停車時の発電(風力)	アルミ電 ケースを	製造可能な精度/材質等 アルミ電線を利用し、コイルの軽量化を図る ケースを樹脂化し、軽量化を図る			
問題点(課題)と対応方法 ・発電量が少ないので蓄電や複数設置にて利用 ・特殊形状のコイルは手作業にて製作しているが 将来的には自動化し、コスト削減を考えている	開発進度 ロアイ 開発 パテントの	完了段階 🔻 🛚	試作/実験]製品化完了		
提案の狙い/従来との比較(数値割合) □ 原価低減 () ■ 品質	/性能向上 (100%	6増加)	
□ 質量低減 □ 生産(作業)性向上 () ■ 安全) □ その	/環境対策 (他()(捨てていたエネ	・ルギーの回収)	
会社名					
(株)システム技研		宮崎県都城市吉尾町1989-1			
連絡先		<u></u>			
部署名:新製品開発室 担当名:柿 直樹		Tel No.: 0986-27-5300 E-mail: webmaster@sys-gi.co.jp			
要取引先 海外対応					
トヨタ自動車(株) 日鉄テックスエンジ(株) (株)ディスコ、テセック(株)		口可 (生産技	処点国を記入	●否	